Metal-organic frameworks:
Metal-directed assembly
and novel catalysts
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Arrays of metal-containing clusters for
catalysis

* Water splitting: Electrocatalysis of water oxidation

* Heterogeneous catalysis of gas-phase reactions, e.g.
alkene hydrogenation



Stroma D2 D1

Thylakoid
membrane , —
- \
. gf‘*\ - o
..:P J t'r.' o
3 ’ s TSy
c%‘ » N b .

Manganese
cluster

Thylakoid lumen

Natan Nelson and Adam Ben-Shem, Nature Reviews Molecular Cell Biology 5:1 (2004)

Photosystem Il
oxygen-evolving complex
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Artificial clusters as catalysts for O, or H,
evolution

How can we:
* create open sites?

e precisely control cluster size,
shape, and composition?

e avoid cluster aggregation?

e address clusters
photochemically?

From: Umena, et al,,
Nature 2011, 473, 55-61.



Synthesis Approach: Atomic Layer Deposition

Thin-film ALD on a Surface
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Synthesis Approach: Atomic Layer Deposition

Thin-film ALD on a Surface ALD on a Molecular Platform

(" = Oxygen ‘ = Aluminum electrode




ALD-like synthesis of electrode-supported
arrays of metal-oxide clusters

Mn(CpEt),

OZ/HZ
Free base =~ MiX Mn metalated with ALD clusters of Porphyrin
porphyrin isolated OH metal oxides removal
attached to nucleation site with ozone
electrode

Monodisperse array of
metal-oxide clusters

Avila, Martinson



Using an analytic island growth model, the density and size of
nucleation sites can be ascertained using “in synthesis”
quartz-crystal microgravimetry (QCM)
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In-synthesis QCM shows successful growth of
“Mn(OH),” clusters on metalated porphyrin
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With Zn porphyrin, no
nucleation site is present.
Experiment also shows
that cluster growth at
porphyrin interstitial sites
is essentially nonexistent.

Avila, Martinson



Figure 5 — GISAX scattering profile of
MnO on porphyrin

* Preliminary GISAX in-
situ scattering showing
form factor evolution
and inter-particle
scattering

* Silicon platform shows
less form factor
evolution and minimal
inter particle scattering
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gy cut showing form factor of MnO
clusters grown on porphyrin vs Si

* In-plane cut shows clear
N feature with the
porphyrin platform and
not the silicon support

 Silicon platform shows
only increase in
Intensity

* Porphyrin peak
indicates a cluster -

y cluster distance of 5
55"0":” 2 H;('."(';l 2 345 angstroms




Similar idea: Nickel oxide cluster formation

ALD-QCM
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Does it work?
Electrochemical water oxidation by NiO clusters

Current density in alkaline electrolyte (1 M NaOH)

Overpotential (V)
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Does it work?

Electrochemical water oxidation by NiO clusters

Current density in alkaline electrolyte (1 M NaOH)
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Mechanistic Kinetics of Electrocatalysis

Tafel plots for oxygen evolution via nickel oxide clusters in 1 M hydroxide
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Mechanistic Kinetics of Electrocatalysis

Tafel plots for oxygen evolution via nickel oxide clusters in 1 M hydroxide
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Kim, Avila

48 mV Tafel slope -
second e- transfer (e-chem
step) is rate determining



Mechanistic Kinetics of Electrocatalysis

Tafel plots for oxygen evolution via nickel oxide clusters in 1 M hydroxide
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Kim, Avila



Mechanistic Kinetics of Electrocatalysis

Tafel plots for oxygen evolution via nickel oxide clusters in 1 M hydroxide
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O— B “0
Hzo + e
OER
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OH 33 mV Tafel slope >
_' O— B -0 B =1.8 > 2 e transferred
before rate-determining
24 Ni/cluster chemical step

Kim, Avila Rate-determining step is cluster size dependent!



Mixed Metal-Oxide clusters are better catalysts Ni-Fe

Typical J-V curves vs Normalized curves for the number of electroactive sites
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Questions

Time-evolution of cluster structures?
Potential dependence of cluster structures

Distribution of different metals in mixed-metal
clusters?

Can we follow metal-oxygen bonding during the

course of catalysis? Different cluster sizes allow us to
stage different rate-determining steps.



Arrays of metal-containing clusters for
catalysis

* Heterogeneous catalysis of gas-phase reactions, e.g.
alkene hydrogenation



Metal-Organic Frameworks (MOFs)

nature

Metallic Organic ChemlStr y

nodes struts

Every MOF you make

» Solvothermal synthesis; simple, scalable materials assembly

» Broad channel and pore size tunability " gy

» Complete uniformity of channels &

» Amenable to experimental structural characterization @ .

» Amenable to computational modeling - Cm

» Enormous internal surface areas: up to 7,200 m4/g



ALD In MOFs (AIM)

Global Hypothesis: Coupling ALD and MOF (metal-
organic framework) chemistry will allow us to develop hybrid
materials with new and unique functions for materials
related applications.

25



Mondloch, Bury



. NU-1000

31 A pore diameter

Exceptionally stable: purified by heating
Bury, Mondloch, Timothy Wang 80°C for 24 hours in 0.5 M HCl in DMF



ICP-OES Metallation Results

Al-AIM (Al:Zr, = 8)
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Retention of Crystallinity Following AIM:
Powder X-ray Diffraction Measurements
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Mondloch, J.E.; Bury,W. et al. J.Am. Chem. Soc. 2013, 35, 10294.
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Bringing Other Metals into NU-1000
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ALD Periodic Table of the Elements
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Initial Success with AIM
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The as-synthesized Ni-AlM is not
active, but H, treatment for 2 hours at
200 °C can activate the catalyst.

1. Pressure 1.5 bar
2. Temperature 50 °C
3. Ni-AIM 3.3 mg
4. Ethylene:H, 1:2

conversion

0.05

0

Ethylene Hydrogenation in Gas Phase

] y = 0.8392x - 0.0724
R? = 0.99648
0.1 0.15 0.2 0.25
W/F

Q Activity: On average, TOF = 0.90 + 0.25 s-', comparable to/slightly lower than

supported Pt catalysts based on different reports

O Stability: 100% conversion of ethylene for two-week consecutive run, no decrease in

activity

O Recyclability: Expose to ambient condition deactivate the catalyst, but further H,
treatment can re-activate Ni-AlM, 100% conversion of ethylene for another week

before the experiment is stopped



Putative Schematic Representation for
Ni-AlIM Process
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Structural information of AIM products can be obtained through pair distribution
function and extended X-ray absorption fine structure (EXAFS) analysis.



Differential Pair Distribution Function
Analysis on NU-1000 upon Heating
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Karena Chapman

Zr, node distortion NU-1000
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NORTHWESTERN
UNIVERSITY

Gas atmosphere:
3.5% H, in He
Temperature program:
heat to 200°C in 1 hr
heat at 200°C in 2 hr
cool to 50°C in 1 hr
cool to RT

In-situ D-PDF Analysis on Ni-AlM

Karena Chapman

——0.77 Ni_RT-t0 0.77 N_200-t9 ——0.77 Ni_RT-t20

At 200 °C there is a large change in the structure for Ni-AlIM:
O The distortions look like the Zr-node distortions we associated with dehydroxylation
O There is a contraction of the average Ni-O distance.



In-situ Extended X-ray Absorption
Fine Structure (EXAFS)

NORTHWESTERN
UNIVERSITY

Ni_NU1000_NMS Jeff Miller
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In-situ Extended X-ray Absorption
Fine Structure (EXAFS)
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Ni_NU1000_NMS Jeff Miller
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In-situ X-ray Absorption Near Edge
Structure (XANES)
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XANES measurements
indicates the Ni(ll)
nature in both as-
synthesized and
pretreated Ni-AlM
materials



Proposed Structure of Ni-AIM

NORTHWESTERN
UNIVERSITY

In conjunction with Density-Functional Theory calculatlons
this structure is proposed.
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